3
Rationalise and simplify: $$\frac{5}{(3 - \sqrt{2})^2}$$
答案:
先展开分母:$$(3 - \sqrt{2})^2 = 9 - 6\sqrt{2} + 2 = 11 - 6\sqrt{2}$$
有理化:$$\frac{5}{11 - 6\sqrt{2}} = \frac{5(11 + 6\sqrt{2})}{(11 - 6\sqrt{2})(11 + 6\sqrt{2})} = \frac{5(11 + 6\sqrt{2})}{121 - 72} = \frac{5(11 + 6\sqrt{2})}{49} = \frac{55 + 30\sqrt{2}}{49} = \frac{55}{49} + \frac{30\sqrt{2}}{49} = \frac{55 \div 1}{49 \div 1} + \frac{30\sqrt{2}}{49} = \frac{55}{49} + \frac{30\sqrt{2}}{49}$$
约分:$$\frac{55}{49} = \frac{55 \div 1}{49 \div 1} = \frac{55}{49}$$, 但不能再约分,所以最终结果为$$\frac{55 + 30\sqrt{2}}{49}$$
4
Given x = 1/(√3 - 1), find the value of x² - 2x + 2
(提示:先有理化x,再代入计算)
答案:
先有理化x:$$x = \frac{1}{\sqrt{3} - 1} = \frac{\sqrt{3} + 1}{(\sqrt{3} - 1)(\sqrt{3} + 1)} = \frac{\sqrt{3} + 1}{3 - 1} = \frac{\sqrt{3} + 1}{2}$$
代入计算:
$$x^2 = \left( \frac{\sqrt{3} + 1}{2} \right)^2 = \frac{3 + 2\sqrt{3} + 1}{4} = \frac{4 + 2\sqrt{3}}{4} = \frac{2 + \sqrt{3}}{2}$$
$$2x = 2 \times \frac{\sqrt{3} + 1}{2} = \sqrt{3} + 1$$
$$x^2 - 2x + 2 = \frac{2 + \sqrt{3}}{2} - (\sqrt{3} + 1) + 2 = \frac{2 + \sqrt{3}}{2} - \sqrt{3} - 1 + 2$$
$$= \frac{2 + \sqrt{3}}{2} + 1 - \sqrt{3} = \frac{2 + \sqrt{3} + 2 - 2\sqrt{3}}{2} = \frac{4 - \sqrt{3}}{2} = 2 - \frac{\sqrt{3}}{2}$$